Supporting information for

Effect of Pressure on Interband and Intraband Transition of Mercury Chalcogenides Quantum Dots

Clément Livache1,2, Nicolas Goubet1,2, Charlie Gréboval1, Bertille Martinez1,2, Julien Ramade1, Junling Qu1, Amaury Triboulin1, Hervé Cruguel1, Benoit Baptiste3, Stefan Klotz3, Guy Fishman4, Sébastien Sauvage4, Francesco Capitani5, Emmanuel Lhuillier1

1Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
2Laboratoire de Physique et d’Etude des Matériaux, ESPCI-ParisTech, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
3Sorbonne Université, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
4Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N – 10 boulevard Thomas Gobert, 91460 Palaiseau, France
5Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France

To whom correspondence should be sent: el@insp.upmc.fr

Table of content

1. HgTe CQD synthesis ... 2
2. HgSe CQD synthesis ... 3
3. Material characterization ... 4
4. IR spectroscopy under pressure .. 5
 4.1. Signal filtering .. 5
 4.2. IR spectroscopy under high pressure (P>3GPa).. 5
5. k·p simulation... 6
6. References .. 7
1. HgTe CQD synthesis

Figure S1a and b are respectively TEM image and zero pressure infrared spectrum from HgTe CQD with a band edge energy at 6000 cm$^{-1}$. c and d are respectively TEM image and zero pressure infrared spectrum from HgTe CQD with a band edge energy at 4000 cm$^{-1}$. e and f are respectively TEM image and zero pressure infrared spectrum from HgTe CQD with a band edge energy at 2000 cm$^{-1}$.
2. HgSe CQD synthesis

Figure S2a and b are respectively TEM image and zero pressure infrared spectrum from HgSe CQD with an intraband peak energy at 3000 cm$^{-1}$. c and d respectively TEM image and zero pressure infrared spectrum from HgSe CQD with an intraband peak energy at 2500 cm$^{-1}$. e and f respectively TEM image and zero pressure infrared spectrum from HgSe CQD with an intraband peak energy at 1000 cm$^{-1}$.
3. Material characterization

Under high pressure, the zinc blende phase of the HgTe nanocrystal switches toward a cinnabar phase, which refined diffractogram is provided in Figure S 3a. A scheme of the cinnabar HgTe unit cell is given in Figure S 3b. We found the structural parameter of the hexagonal phase of HgTe to be $a=b=0.447$ nm and $c=0.943$ nm under 5.5 GPa of pressure.

Figure S 3 a. Experimental and refined X-ray diffractogram from HgTe nanocrystal under a 5.5 GPa pressure. b. Scheme of the HgTe cinnabar unit cell.
4. IR spectroscopy under pressure

4.1. Signal filtering
The infrared data obtained from the setup described in figure 2 of the main text present oscillations, see Figure S 4. They result from interference with the diamond cell. The high frequency oscillations are then removed using an FFT filtering procedure, see Figure S 4.

Figure S 4 a raw and filtered infrared spectrum obtained from HgSe CQD with intraband peak energy at 2500 cm-1. b is a zoom on the same spectrum in the range of energy between 4000 and 5000 cm-1.

4.2. IR spectroscopy under high pressure (P > 3 GPa)

Figure S 5 a. Infrared spectra for HgTe CQD, with a 6000 cm-1 band edge at zero pressure, in the 3 to 10 GPa range of pressure. b Infrared spectra for HgSe CQD, with a 1000 cm-1 intraband peak at zero pressure, in the 3 to 10 GPa range of pressure.
5. \(\mathbf{k} \cdot \mathbf{p} \) simulation

The energy dispersion \(E(k) \) with wavevector \(k \) in the Brillouin zone is calculated using a Pidgeon-Brown 8 band \(\mathbf{k} \cdot \mathbf{p} \) formalism as shown in Figure S 6a.\(^1 \) The bulk states at the \(\mathbf{k} \) vector are developed on a limited set consisting in 8 zone center Bloch states of \(\Gamma _6, \Gamma _7 \) and \(\Gamma _8 \) symmetry. Through adjustable parameters the 8x8 matrix accounts for the \(\mathbf{k} \cdot \mathbf{p} \) interaction between these states but also for the perturbative influence of the zone center states outside of the basis set. These \(\mathbf{k} \cdot \mathbf{p} \) parameters are chosen to reproduce as closely as possible the band structure given in the figure 3(c) from Ref.\(^2 \) obtained through the h-QSGW scheme of Svane et al. Note that on purpose we do not introduce the linear term in the \(\mathbf{k} \cdot \mathbf{p} \) matrix that leads to the splitting of the heavy \(\Gamma _8 \) band along \(\Gamma - L \) obtained by Svane et al since this splitting plays a negligible contribution to the interband energy. The obtained \(\mathbf{k} \cdot \mathbf{p} \) dispersions \(E(k) \) of the 8 bands are given Figure S 6a. It is plotted using the same scale as Ref\(^2 \) in order to be readily compared.

The dispersion of the two \(\Gamma _6 \) bands can be approximated near the Brillouin zone center through the Dresselhaus-Kip-Kittel formula\(^3 \)

\[
E(k) = E(k = 0) + Ak^2 \pm \sqrt{B^2 k^4 + C^2 \left(k_x^2 k_y^2 + k_y^2 k_z^2 + k_z^2 k_x^2\right)},
\]

with \(A = 37.8 \, \hbar^2 / 2m_0 \), \(B = 20.39 \, \hbar^2 / 2m_0 \), \(C = -107.8 \, \hbar^2 / 2m_0 \) obtained from the \(\mathbf{k} \cdot \mathbf{p} \) hamiltonian. \(\hbar = h / 2 \pi \) is the reduced Plank constant and \(m_0 \) is the electron mass. This formula amounts to a parabolic dispersion along each direction of the Brillouin zone. We use this parabolic dispersion to evidence the strong non parabolicity of \(E(k) \) a few percent away from the Brillouin zone in the comparison of Figure 5a.

In semiconductors exhibiting a cubic structure, a hydrostatic pressure \(P \) produces a scalar deformation tensor \(\epsilon \) so that for the diagonal elements \(\epsilon_{xx} = \epsilon_{yy} = \epsilon_{zz} = P / 3B \) where \(B \) is the bulk modulus and \(\epsilon_{xy} = \epsilon_{yz} = \epsilon_{zx} = 0 \) for the shear strain component.\(^4 \) Since the contraction of the lattice parameter produces an expansion of the Brillouin zone and simultaneously an expansion of the wavevectors \(k \) involved in the confined states, we neglect these two roughly self-cancelling effects in the strained electronic structure calculations. The effect on strain on the energy dispersion is accounted for through the change in the energy difference between \(\Gamma _6 \) and \(\Gamma _8 \) state energies at the zone center with a deformation potential of \(d(E_{\Gamma _6} - E_{\Gamma _8}) / d\epsilon \approx -2.4 \, \text{eV} \). As depicted in Figure S 6b and 5a, the pressure first results in a decrease of the conduction band effective mass \(m^*_e(k=0,P) \), until \(\epsilon = -2.2\% \) where the band gap opens and the effective mass increases again. The equivalent mass \(m^*_e(k,P) \) calculated at \(k = 10\% \ 2\pi / a \) along the \(\Gamma - L \) direction follows the same trend but with much less amplitude variation.

Figure S 6 Simulated band structure of HgTe at zero strain from \(\mathbf{k} \cdot \mathbf{p} \) simulation. Parameters are obtained by fitting the predicted band structure by Svane et al.\(^2 \). b. Equivalent mass of the conduction band as a function of strain \(\epsilon \), at the zone center and at 10% of the Brillouin zone along \(\Gamma - L \). The equivalent mass is the mass \(m^* \) that gives the energy \(E \) of the conduction band at \(k \) point through the formula \(E = E(k = 0) + \frac{\hbar^2 k^2}{2m^*} \).
6. References

